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Fluctuations provide strong selection in Ostwald ripening
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A selection problem that appears in the Lifshitz-Slyozo8) theory of Ostwald ripening is reexamined. The
problem concerns selection of a self-similar distribution functidfR) of the minority domains with respect to
their sizes from a whole one-parameter family of solutions. A strong selection rule is found via an account of
fluctuations. Fluctuations produce an infinite tail in the DF and drive the DF towards the “limiting solution”
of LS or its analogs for other growth mechanisi81063-651X99)02709-9

PACS numbes): 05.70.Fh, 64.60-i, 47.54+1

Ostwald ripening(OR) [1] is a fascinating and generic

However, the coefficients in these scaling laws are

process of self-organization in a physical system far fromo-dependent. The scaling functidn(¢) has a markedly dif-
equilibrium. It develops in a late stage of a first-order phasderent shape depending on the value @f It should be
transition, in two or three dimensions, when a two-phasestressed that the problem of OR, as described by @gysnd
mixture undergoes coarsening and the interfacial energy dé€2), is fully determinedof course, if one prescribes an initial

creases subject to a global conservation [&y8]. OR con-
tinues to attract considerable attention both in experifént
and in theory{5-9]. For a nonlinear physicist, the problem

condition. Therefore, the scaled coefficiemtis an observ-
able quantity. It can be determined in a direct experiment or
simulation by measuring, at large times, treefficientin the

of OR is of great interest because of a long-standing selegower law for the critical radiu®; versus time. The reader

tion problem[2,6—9 addressed below.

Lifshitz and Slyozov(LS) [2] and Wagnei 3] developed
a mean-field formulation of OR, valid in the limit of a neg-
ligibly small volume fraction of the minority domains. In this
formulation, the dynamics of the distribution functiobF)
F(R,t) of the minority domain sizes are governgud scaled
variable$ by a continuity equation,
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whereR((t) is the critical radius for expansion/shrinkage of

an individual domain, whilen is determined by the growth

mechanism(For a review of different growth mechanisms

see Refs[10]. Most known are diffusion-controlled growth,
n=1, and interface-controlled growth=0.) The dynamics
are constrained by conservation of the total masyolume
of the minority domains:

me?’F(R,t)dR:Q:const. 2
0

Scaling analysis of Eqg.l) and (2) yields a similarity
ansatzF (R,t)=t~*®(Rt"Y%) and R.=(t/0)'? wherez
=n+2 ando=const. Upon substitution, one obtain$am-
ily of self-similar DFs(formally, for everyn=—1). Each of
the DFs is localized on a finite intervg0,u,,] of the simi-
larity variableu= Rt~ 2. The self-similar DFs can be param-

is referred to Ref{9] for a detailed description of the family
of self-similar DFs for different values of.

An important selection problem therefore arises. It has a
long history[2,6—9, and its present status is as follows.
There is only a “weak” selection within the framework of
the “classical” model (1) and (2). The “weak” selection
rule, obtained recently8,9], is the following. If the initial
DF F(R,0) has a compact support &,) and is describable
by a power lawA(R,—R)" in the close vicinity of R
=R,,, then it is the exponent that selects the correct self-
similar asymptotic DF. The selected value of parametés

- V8+2
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(n+2)A+n+5
4

Vo nF D)r+n+4

(see Ref.[9] for detaily. The celebrated “limiting” DFs
obtained by LY2] for n=1, and by Wagne[3] for n=0,
correspond textendednitial DFs or, formally, toN — + .

In this case Eqs(3) and(4) yield the well-known “univer-
sal” value o=9/4 for the diffusion-controlled ORn=1,
found by LS[2]. On the contrary, as it is clear from Ed8)
and (4), for initial DFs with compact support and finite,
different values of the scaled coefficiemtare obtained. Fi-
nally, for those initial DFs with compact support that cannot

etrized byo, and there is a finite interval of allowed values be described by a power-law asymptotics nearR,,, con-
of the scaled coefficiensr. For each solution, the average vergence toany self-similar solution is impossiblg11]. A

domain radius and the critical radius grow in time IiK&,
while the concentration of domains decreases liké?Z.
*Electronic address: meerson@vms.huji.ac.il
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rigorous mathematical proof of these results is presently
available[11].

It has become clear after the analyses of RE8s9,11]
that in order to get strong selection, one must go beyond the
“classical” model. In the present paper | report on progress
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in this direction. Here is an outline. | will employ a mean- second-order terms in 4/(in contrast to the approach of
field cluster formulation of the problem and proceed to theBinder, who kept such terms in his description of the nucle-
long-time limit, when only large clusters and single atomsation stage, but neglected them in the coarsening stAgea
dominate. Using the characteristic inverse number of atomeesult, Eq.(6) takes the form of a FP equation:

in a cluster as a small parameter, | will arrive at a Fokker-

Planck (FP) equation for the cluster size distribution func- INg o

tion. The drift term of the FP equation describes growth/ p +a_s(V5NS):§E(D5NS)' 8
shrinkage of clusters due to an interplay between

attachments and detachments of single atoms, and it corrgz, e

sponds to the “classical” LS theory. The diffusion term of

the FP equation accounts for fluctuations, and it is not V(t)=KN;—1/7, and Dgt)=KN;+1/7, (9
present in the LS theory. This term becomes irrelevant at

long times, however it can play a very important role. In-are the drift velocity and diffusion coefficient in tisspace.
deed, even if the initial DF has compact support, the diffu- 5 ontinuous version of the equation iy follows from

sion term produces an infinite tail in the DF. As a result, they, o yiscrete equatiofb). We can assuménd checka pos-
DF will finally approach the limiting solution of L$2] (0r  teriori) that in the late coarsening stage there isqaasi-

Its aﬁalogs forf_oltger growth mecha?ls)rr;ns | deb steady-statebalance between the processes of attachment
The mean-field rate equations of the cluster mdsek, 54 getachment of single atoms by large clusters:

e.g.,[12—14)) represent a natural extension of the mean-field

continuum models, as these equations account for the dis-

N
crete nature of atoms: —N; D KN+ D —=0, (10)
s=2

s=3 Tg

2

- N N
N1=—2K1N§—le2 KSNS+27—2+2 —, (5  while the rest of the terms of Ed5) become irrelevant.
s= 2

$=3 Ts Treatings as a continuous variable, we obtain
\ Ns Ns+1 B
Ng=N;(Kg_1Ng_1— -—+ . -1
s 1( s—1Ns—1 KSNS) Ts Tes1 (6) J Ts NSdS
. N : Ny(t)=— (11
Here Ng(t) is the cluster size distribution functiors (s the K N.ds
number of atoms in a clusteiK are the rates of attachment 0o °°%

of single atoms to a cluster of sizgand 75 are the inverse

rates of detachment of single atoms from a cluster of size (Again, we can assume that the number of clusters with
Rare events of direct intercluster coalescefm@agulation  small s is very small and formally shifts to zero the lower
are neglected in E(6); this requires a small volume fraction limit of integration over the continuous variakdg

of the “cluster phase.” As no external source of atoms is The same Eq(11) can be formally obtained if we multi-
present in Eqs(5) and(6), these equations preserve the totalply both sides of Eq(8) by s, integrate ovess, and use the
concentration of atoms: conservation law Eq(7). Then, performing integration by
parts in the two remaining terms, we again arrive at &d).

[’

d 2 _ In this derivation one should disregard the boundary terms
dt & sNy(t)=0, @) produced by integration by parts. As will be checked later,
the “upper” boundary termsVNg and s(d/9s)(DgNg) at
a discrete equivalent of E@R). s—oo vanish. In this case the third term vanishes there auto-

For most growth mechanisn{gcluding the growth pro- matically. The boundary terms corresponding to the lower
cesses, controlled by diffusion and by interfacehe limit of integration are assumed to be negligible compared to
attachment-detachment kinetics, combined with mass corthe terms that we take into account. Formally, one should
servation, promotes growth of larger clusters at the expensequire thatNg vanishes sufficiently fast &— 0. (Remem-
of smaller ones, and this process is nothing but OR. Thereder, that the number of single atorhy is described sepa-
fore, if the total concentration of atoms is large enough, theately)
system undergoes coarsening: the average cluster size growsEquations(8)—(11) (supplemented by appropriate initial
in time and the total number of clusters decreases. The latend boundary conditiongepresent a complete set of equa-
time asymptotics of this process should reproduce OR quariions for the late coarsening stage. If one neglects the diffu-
titatively [12,13. At the coarsening stage the number of sion term, he recovers the Lifshitz-Slyozov-Wagner descrip-
clusters with smals becomes very small, except for the con- tion and corresponding self-similar asymptotics and scalings
centration of single atomsl; that remains relatively large for large timeg[12,13. To make this recovery explicit, one
because of the ongoing detachment processes. Therefore, asteuld specify the dependenceskaf and 74 on s. Looking
should consider the population of single atoms separately. Afor scale invariance, we should assume power lats:
far as a description of clusters is concerned, one can proceedK;sP and r;=as%. Now, assuming a compact cluster mor-
to the limit of s>1, treats as a continuous variable, and use phology (d-dimensional spherical “drop,” wherd is equal
the Taylor expansion in &/in Eqgs.(5) and(6). Essentially, to 2 or 3, | require that Eqs(8) and (11) (without the dif-
this derivation follows the paper of Bindgt2]. However, in  fusion tern) coincide (after scaling down the coefficients
order to account for fluctuations, we should keep thewith Egs.(1). This gives a direct correspondence between
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the drift velocitiesV(t), entering Eq.(9), andV(R,t), en-  contrary, the presence of fluctuations leads to a small but
tering Eq.(1). Using this “correspondence principle” | find nonzeroprobability of the appearance of clusters wihy
that the concentration of single atorig(t) scales like the number of atoms. As the dynamics of OR is very sensitive to
inverse critical radiusR.(t), while the exponentg andgq  small changes in the region of the largest available clusters,
must be the following:p=(d—n—1)/d and g=(n—d the presence of the infinite tail in the DF will ultimately
+2)/d. In particular, for the diffusion-controlled growtm(  affect the whole dynamics, driving the DF towards the lim-
=1) one obtainp=1/3 andgq=0 in three dimensions and iting DF. Of course, as fluctuations in macroscopic systems
p=0 and g=1/2 in two dimensions. For the interface- gre extremely small, the time necessary for the DF to actu-
controlled growth (=0) one getp=2/3 andq=—1/3in 3|y converge to the selected limiting solution can be ex-
three dimensions and=1/2 andq=0 in two dimensions  remely long(if one starts from a bounded DA this case
[15]. Note that, returning to the original, dimensional version| expect that, on dquite long intermediate time scale, a
of Eq. (1) (see, e.g. Ref.10]) and demanding an exact co- gt similar DF selected by will develop, and only at much
incidence with the zero-diffusion limit of Eq$8) and (9), |4ter times will crossover to the limiting DF be observed.

Wr?)vsannj?ghéufsrﬁoemuenw1 and a as well, for every This crossover can happen much earlier if coarseningen
9 : e soscopicsystems is considered, where the role of the discrete
Let us return to the case of nonzero diffusion in Eg). . .
nature of atoms increases dramatically. For example, | expect

As itis seen from the second formula of Ef), the mapping . .
procedure, described above, completely determines the difh'S effgct to he obs_ervable in the processes of submor_wolqyer
relaxation of atomic clusters on surfaces, after epitaxial

fusion coefficienD. Simple scaling arguments show that the o
diffusion term becomes irrelevant at long timfgs). How-  deposition is stopped. o

ever, even without going into much detail in €8), one can L€t us compare the cluster approach used in this work
see that this term producéaready at>0) an exponentially with the approach of_ Mulling17]. Mulllqs accounted for the '
small tail in the DF, even if the DF had a compact support afact that droplets with the same radius do not necessarily
t=0. In essence, small fluctuations transform a strictyhave the same expansion/shrinkage rabesause of corre-
bounded DF into an extended one. It was shown already blations. He generalized the classical LS model by replacing

LS that an extended DF approaches, for long timesjithe  the deterministic growth law for a dropleR=V(Rt)
iting self-similar SOlUtIOf‘[Z]. In the Ianguage of Eq$3) and [Wherev is given by the second equation in Hq_)], by the

(4), one can say, therefore, that fluctuations select equation<R|R)=V(R,t), Where<R|R> is theaveragevalue

of R for droplets with a giverR. Then he inserted this rela-
tionship in the continuity equatiofil). In contrast to the
cluster approach, the approach of Mullins does not produce a
Therefore, fluctuations provide a strong selection rule in fadiffusion term(as it does not account for fluctuations related
vor of the limiting solutions of LS(for n=1), of Wagner to the discrete character of particdiesherefore it does not
(for n=0), and of its counterparts for other growth mecha-provide a strong selection mechanism for OR.
nisms. Finally, | briefly speculate on possible additional mecha-
Now we can go back and justify the disregard of the up-nisms of strong selection. An account of fluctuations repre-
per boundary terms arising from the integration by parts insents only one possible way of going beyond the “classical”
the derivation of Eq(11). For a DF with an exponentially | 5 formulation. Various finite volume fraction effects can
small tail at larges, the boundary terms obviously vanish in provide alternative ways. One such alternative is rare coagu-
the scaling regime, as a power-law increase/gfwith sis  |ation events that can be accounted for already in the mean-
too slow to change anything. This case is relevant for afie|d formulation. This alternative was briefly discussed by
initially compact DF, as fluctuations produce an exponeny s already in 19612]. As the result of the rare coagulation
tially small tail. For an extended initial DF withgower-law  eyents, a DF that had a compact supportad is also
tail, Ng(t=0)>s"*, finiteness of the cluster concentration, expected to develop a tail which will drive it towards the
limiting solution. No quantitative analysis of this scenario is
mes(t)ds<w, presently available. Another possibility involves correlation
effects, completely ignored by any mean-field description.
Here | should mention the work of MardEgt8], who studied
requiresu>2. Then, using the assumed power lawsKQr  screening effects in OR and arrived alifferentFP equation
and 7, and evaluating the boundary ternsV;Ns and for the DF. In his analysis, the diffusion term results from the
s(a/ds)(DgNg), we must require the following inequalities screening effects rather than from fluctuations, and it is pro-
p<1 andg>—1. Using the values of the exponemtandg  portional to the square root of the volume fraction. Of
determined from the *“correspondence principle,” we seecourse, the presence of any linear diffusion term in the FP
that these two inequalities are satisfied for amy—1, that equation will produce a tail in the DF and drive the DF
is, for all cases of physical interest. towards the limiting solutior(if the diffusion term is small
One can suggest the following physical argument supportenough and does not interfere in the scaling regiriée
ing the strong selection rule. In the absence of fluctuations, aomparative role of these possible selecting mechanisms is
bounded DF always remains bound€8,9,11. In other  obviously volume-fraction-dependent. Of course, nonuniver-
words, there is exactlgeroprobability to have clusters with sal transients and convergence rates towards the selected DF
a size larger than some finite time-dependent size. On thare expected to differ significantly in the different scenarios.

n+2 n+l

n+1

n+2

n+1

Vo= and o= (12
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In summary, small fluctuations provide a strong selection | acknowledge useful discussions with O. Biham and A.J.
rule in the problem of Ostwald ripening, as they drive theVilenkin. This work was supported in part by a grant from
system, at long times, towards the limiting Lifshitz-Slyozov the Israel Science Foundation, administered by the Israel
solution. Academy of Sciences and Humanities.
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