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Fluctuations provide strong selection in Ostwald ripening
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~Received 6 April 1998; revised manuscript received 16 April 1999!

A selection problem that appears in the Lifshitz-Slyozov~LS! theory of Ostwald ripening is reexamined. The
problem concerns selection of a self-similar distribution function~DF! of the minority domains with respect to
their sizes from a whole one-parameter family of solutions. A strong selection rule is found via an account of
fluctuations. Fluctuations produce an infinite tail in the DF and drive the DF towards the ‘‘limiting solution’’
of LS or its analogs for other growth mechanisms.@S1063-651X~99!02709-9#

PACS number~s!: 05.70.Fh, 64.60.2i, 47.54.1r
c
om
s
s
d

m
le

-
s

of

s
,

-
s
e

l

t or

r

s a
s.
f

f-

ot

ntly

the
ss
Ostwald ripening~OR! @1# is a fascinating and generi
process of self-organization in a physical system far fr
equilibrium. It develops in a late stage of a first-order pha
transition, in two or three dimensions, when a two-pha
mixture undergoes coarsening and the interfacial energy
creases subject to a global conservation law@2,3#. OR con-
tinues to attract considerable attention both in experiment@4#
and in theory@5–9#. For a nonlinear physicist, the proble
of OR is of great interest because of a long-standing se
tion problem@2,6–9# addressed below.

Lifshitz and Slyozov~LS! @2# and Wagner@3# developed
a mean-field formulation of OR, valid in the limit of a neg
ligibly small volume fraction of the minority domains. In thi
formulation, the dynamics of the distribution function~DF!
F(R,t) of the minority domain sizes are governed~in scaled
variables! by a continuity equation,
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whereRc(t) is the critical radius for expansion/shrinkage
an individual domain, whilen is determined by the growth
mechanism.~For a review of different growth mechanism
see Refs.@10#. Most known are diffusion-controlled growth
n51, and interface-controlled growth,n50.! The dynamics
are constrained by conservation of the total mass~or volume!
of the minority domains:
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`

R3 F~R,t !dR5Q5const. ~2!

Scaling analysis of Eqs.~1! and ~2! yields a similarity
ansatzF(R,t)5t24/zF(Rt21/z) and Rc5(t/s)1/z, where z
5n12 ands5const. Upon substitution, one obtains afam-
ily of self-similar DFs~formally, for everyn>21). Each of
the DFs is localized on a finite interval@0,um# of the simi-
larity variableu5Rt21/z. The self-similar DFs can be param
etrized bys, and there is a finite interval of allowed value
of the scaled coefficients. For each solution, the averag
domain radius and the critical radius grow in time liket1/z,
while the concentration of domains decreases liket23/z.
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However, the coefficients in these scaling laws are
s-dependent. The scaling functionF(j) has a markedly dif-
ferent shape depending on the value ofs. It should be
stressed that the problem of OR, as described by Eqs.~1! and
~2!, is fully determined~of course, if one prescribes an initia
condition!. Therefore, the scaled coefficients is an observ-
able quantity. It can be determined in a direct experimen
simulation by measuring, at large times, thecoefficientin the
power law for the critical radiusRc versus time. The reade
is referred to Ref.@9# for a detailed description of the family
of self-similar DFs for different values ofn.

An important selection problem therefore arises. It ha
long history @2,6–9#, and its present status is as follow
There is only a ‘‘weak’’ selection within the framework o
the ‘‘classical’’ model ~1! and ~2!. The ‘‘weak’’ selection
rule, obtained recently@8,9#, is the following. If the initial
DF F(R,0) has a compact support (0,Rm) and is describable
by a power lawA(Rm2R)l in the close vicinity of R
5Rm , then it is the exponentl that selects the correct sel
similar asymptotic DF. The selected value of parameters is

s5
v0

n12

~n12!~v021!
, ~3!

where

v05
~n12!l1n15

~n11!l1n14
~4!

~see Ref.@9# for details!. The celebrated ‘‘limiting’’ DFs
obtained by LS@2# for n51, and by Wagner@3# for n50,
correspond toextendedinitial DFs or, formally, tol→1`.
In this case Eqs.~3! and ~4! yield the well-known ‘‘univer-
sal’’ value s59/4 for the diffusion-controlled OR,n51,
found by LS@2#. On the contrary, as it is clear from Eqs.~3!
and ~4!, for initial DFs with compact support and finitel,
different values of the scaled coefficients are obtained. Fi-
nally, for those initial DFs with compact support that cann
be described by a power-law asymptotics nearR5Rm , con-
vergence toany self-similar solution is impossible@11#. A
rigorous mathematical proof of these results is prese
available@11#.

It has become clear after the analyses of Refs.@8,9,11#
that in order to get strong selection, one must go beyond
‘‘classical’’ model. In the present paper I report on progre
3072 © 1999 The American Physical Society
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in this direction. Here is an outline. I will employ a mea
field cluster formulation of the problem and proceed to
long-time limit, when only large clusters and single atom
dominate. Using the characteristic inverse number of ato
in a cluster as a small parameter, I will arrive at a Fokk
Planck ~FP! equation for the cluster size distribution fun
tion. The drift term of the FP equation describes grow
shrinkage of clusters due to an interplay betwe
attachments and detachments of single atoms, and it co
sponds to the ‘‘classical’’ LS theory. The diffusion term
the FP equation accounts for fluctuations, and it is
present in the LS theory. This term becomes irrelevan
long times, however it can play a very important role. I
deed, even if the initial DF has compact support, the dif
sion term produces an infinite tail in the DF. As a result,
DF will finally approach the limiting solution of LS@2# ~or
its analogs for other growth mechanisms!.

The mean-field rate equations of the cluster model~see,
e.g.,@12–14#! represent a natural extension of the mean-fi
continuum models, as these equations account for the
crete nature of atoms:

Ṅ1522K1N1
22N1(

s>2
KsNs12

N2

t2
1(

s>3

Ns

ts
, ~5!

Ṅs5N1~Ks21Ns212KsNs!2
Ns

ts
1

Ns11

ts11
. ~6!

HereNs(t) is the cluster size distribution function (s is the
number of atoms in a cluster!, Ks are the rates of attachmen
of single atoms to a cluster of sizes, andts are the inverse
rates of detachment of single atoms from a cluster of sizs.
Rare events of direct intercluster coalescence~coagulation!
are neglected in Eq.~6!; this requires a small volume fractio
of the ‘‘cluster phase.’’ As no external source of atoms
present in Eqs.~5! and~6!, these equations preserve the to
concentration of atoms:

d

dt (
s51

`

sNs~ t !50, ~7!

a discrete equivalent of Eq.~2!.
For most growth mechanisms~including the growth pro-

cesses, controlled by diffusion and by interface!, the
attachment-detachment kinetics, combined with mass c
servation, promotes growth of larger clusters at the expe
of smaller ones, and this process is nothing but OR. Th
fore, if the total concentration of atoms is large enough,
system undergoes coarsening: the average cluster size g
in time and the total number of clusters decreases. The
time asymptotics of this process should reproduce OR qu
titatively @12,13#. At the coarsening stage the number
clusters with smalls becomes very small, except for the co
centration of single atomsN1 that remains relatively large
because of the ongoing detachment processes. Therefore
should consider the population of single atoms separately
far as a description of clusters is concerned, one can pro
to the limit of s@1, treats as a continuous variable, and u
the Taylor expansion in 1/s in Eqs.~5! and ~6!. Essentially,
this derivation follows the paper of Binder@12#. However, in
order to account for fluctuations, we should keep
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second-order terms in 1/s ~in contrast to the approach o
Binder, who kept such terms in his description of the nuc
ation stage, but neglected them in the coarsening stage!. As a
result, Eq.~6! takes the form of a FP equation:

]Ns

]t
1

]

]s
~VsNs!5

1

2

]2

]s2
~DsNs!, ~8!

where

Vs~ t !5KsN121/ts and Ds~ t !5KsN111/ts ~9!

are the drift velocity and diffusion coefficient in thes space.
A continuous version of the equation forṄ1 follows from

the discrete equation~5!. We can assume~and checka pos-
teriori! that in the late coarsening stage there is a~quasi-
steady-state! balance between the processes of attachm
and detachment of single atoms by large clusters:

2N1(
s>2

KsNs1(
s>3

Ns

ts
.0, ~10!

while the rest of the terms of Eq.~5! become irrelevant.
Treatings as a continuous variable, we obtain

N1~ t !5

E
0

`

ts
21Nsds

E
0

`

KsNsds

. ~11!

~Again, we can assume that the number of clusters w
small s is very small and formally shifts to zero the lowe
limit of integration over the continuous variables.!

The same Eq.~11! can be formally obtained if we multi-
ply both sides of Eq.~8! by s, integrate overs, and use the
conservation law Eq.~7!. Then, performing integration by
parts in the two remaining terms, we again arrive at Eq.~11!.
In this derivation one should disregard the boundary ter
produced by integration by parts. As will be checked lat
the ‘‘upper’’ boundary termssVsNs and s(]/]s)(DsNs) at
s→` vanish. In this case the third term vanishes there au
matically. The boundary terms corresponding to the low
limit of integration are assumed to be negligible compared
the terms that we take into account. Formally, one sho
require thatNs vanishes sufficiently fast ats→0. ~Remem-
ber, that the number of single atomsN1 is described sepa
rately.!

Equations~8!–~11! ~supplemented by appropriate initia
and boundary conditions! represent a complete set of equ
tions for the late coarsening stage. If one neglects the di
sion term, he recovers the Lifshitz-Slyozov-Wagner desc
tion and corresponding self-similar asymptotics and scali
for large times@12,13#. To make this recovery explicit, on
should specify the dependences ofKs andts on s. Looking
for scale invariance, we should assume power laws:Ks
5K1sp andts5asq. Now, assuming a compact cluster mo
phology (d-dimensional spherical ‘‘drop,’’ whered is equal
to 2 or 3!, I require that Eqs.~8! and ~11! ~without the dif-
fusion term! coincide ~after scaling down the coefficients!
with Eqs. ~1!. This gives a direct correspondence betwe
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3074 PRE 60BARUCH MEERSON
the drift velocitiesVs(t), entering Eq.~9!, andV(R,t), en-
tering Eq.~1!. Using this ‘‘correspondence principle’’ I find
that the concentration of single atomsN1(t) scales like the
inverse critical radiusRc(t), while the exponentsp and q
must be the following:p5(d2n21)/d and q5(n2d
12)/d. In particular, for the diffusion-controlled growth (n
51) one obtainsp51/3 andq50 in three dimensions an
p50 and q51/2 in two dimensions. For the interface
controlled growth (n50) one getsp52/3 andq521/3 in
three dimensions andp51/2 andq50 in two dimensions
@15#. Note that, returning to the original, dimensional versi
of Eq. ~1! ~see, e.g. Ref.@10#! and demanding an exact co
incidence with the zero-diffusion limit of Eqs.~8! and ~9!,
we can find the coefficientsK1 and a as well, for every
growth mechanism.

Let us return to the case of nonzero diffusion in Eq.~8!.
As it is seen from the second formula of Eq.~9!, the mapping
procedure, described above, completely determines the
fusion coefficientD. Simple scaling arguments show that t
diffusion term becomes irrelevant at long times@16#. How-
ever, even without going into much detail in Eq.~8!, one can
see that this term produces~already att.0) an exponentially
small tail in the DF, even if the DF had a compact suppor
t50. In essence, small fluctuations transform a stric
bounded DF into an extended one. It was shown already
LS that an extended DF approaches, for long times, thelim-
iting self-similar solution@2#. In the language of Eqs.~3! and
~4!, one can say, therefore, that fluctuations select

v05
n12

n11
and s5S n12

n11D n11

. ~12!

Therefore, fluctuations provide a strong selection rule in
vor of the limiting solutions of LS~for n51), of Wagner
~for n50), and of its counterparts for other growth mech
nisms.

Now we can go back and justify the disregard of the u
per boundary terms arising from the integration by parts
the derivation of Eq.~11!. For a DF with an exponentially
small tail at larges, the boundary terms obviously vanish
the scaling regime, as a power-law increase ofVs with s is
too slow to change anything. This case is relevant for
initially compact DF, as fluctuations produce an expon
tially small tail. For an extended initial DF with apower-law
tail, Ns(t50)}s2m, finiteness of the cluster concentration

E
0

`

Ns~ t !ds,`,

requiresm.2. Then, using the assumed power laws forKs
and ts and evaluating the boundary termssVsNs and
s(]/]s)(DsNs), we must require the following inequalitie
p,1 andq.21. Using the values of the exponentsp andq
determined from the ‘‘correspondence principle,’’ we s
that these two inequalities are satisfied for anyn.21, that
is, for all cases of physical interest.

One can suggest the following physical argument supp
ing the strong selection rule. In the absence of fluctuation
bounded DF always remains bounded@8,9,11#. In other
words, there is exactlyzeroprobability to have clusters with
a size larger than some finite time-dependent size. On
if-
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contrary, the presence of fluctuations leads to a small
nonzeroprobability of the appearance of clusters withany
number of atoms. As the dynamics of OR is very sensitive
small changes in the region of the largest available clust
the presence of the infinite tail in the DF will ultimatel
affect the whole dynamics, driving the DF towards the lim
iting DF. Of course, as fluctuations in macroscopic syste
are extremely small, the time necessary for the DF to ac
ally converge to the selected limiting solution can be e
tremely long~if one starts from a bounded DF!. In this case
I expect that, on a~quite long! intermediate time scale, a
self-similar DF selected byl will develop, and only at much
later times will crossover to the limiting DF be observe
This crossover can happen much earlier if coarsening inme-
soscopicsystems is considered, where the role of the discr
nature of atoms increases dramatically. For example, I ex
this effect to be observable in the processes of submonol
relaxation of atomic clusters on surfaces, after epitax
deposition is stopped.

Let us compare the cluster approach used in this w
with the approach of Mullins@17#. Mullins accounted for the
fact that droplets with the same radius do not necessa
have the same expansion/shrinkage rates~because of corre-
lations!. He generalized the classical LS model by replac

the deterministic growth law for a droplet,Ṙ5V(R,t)
@whereV is given by the second equation in Eq.~1!#, by the

equation^ṘuR&5V(R,t), where^ṘuR& is theaveragevalue

of Ṙ for droplets with a givenR. Then he inserted this rela
tionship in the continuity equation~1!. In contrast to the
cluster approach, the approach of Mullins does not produ
diffusion term~as it does not account for fluctuations relat
to the discrete character of particles!, therefore it does not
provide a strong selection mechanism for OR.

Finally, I briefly speculate on possible additional mech
nisms of strong selection. An account of fluctuations rep
sents only one possible way of going beyond the ‘‘classic
LS formulation. Various finite volume fraction effects ca
provide alternative ways. One such alternative is rare coa
lation events that can be accounted for already in the me
field formulation. This alternative was briefly discussed
LS already in 1961@2#. As the result of the rare coagulatio
events, a DF that had a compact support att50 is also
expected to develop a tail which will drive it towards th
limiting solution. No quantitative analysis of this scenario
presently available. Another possibility involves correlati
effects, completely ignored by any mean-field descripti
Here I should mention the work of Marder@18#, who studied
screening effects in OR and arrived at adifferentFP equation
for the DF. In his analysis, the diffusion term results from t
screening effects rather than from fluctuations, and it is p
portional to the square root of the volume fraction. O
course, the presence of any linear diffusion term in the
equation will produce a tail in the DF and drive the D
towards the limiting solution~if the diffusion term is small
enough and does not interfere in the scaling regime!. The
comparative role of these possible selecting mechanism
obviously volume-fraction-dependent. Of course, nonuniv
sal transients and convergence rates towards the selecte
are expected to differ significantly in the different scenari
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In summary, small fluctuations provide a strong select
rule in the problem of Ostwald ripening, as they drive t
system, at long times, towards the limiting Lifshitz-Slyoz
solution.
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